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low I E,,,I values, the results for Xb(E m) become 
unreliable. 

The calculated X c values for 13 test structures 
applying four sin 0/2 thresholds, are collected in Table 
6. This table clearly shows the tendency for centro- 
symmetric structures to have an X c value near 1.0 and 
for non-centrosymmetric structures to have a value 
approaching 0. Upon decreasing the dependency on the 
'input' structure, a better approximation for these ideal 
X c values is obtained, especially for structures where at 
first sight a strong preference for 'heavy atom' 
centricity is clearly seen. Upon decreasing the sin 0/2 
limit, the results sometimes become less reliable 
because of the small number Of contributing reflections; 
on the other hand, this sometimes will improve the 
results (see Table 6, entry 5), as errors in thermal 
parameters become less important. 

One example (Table 6, entry 12) does not give the 
expected X c value. To explain this, we have calculated 
the distribution for the I EI values of the rest structure, 
using the phases calculated after the refinement of the 
structure; it was found that this distribution resembles 
more the acentric than the centric curve. From this one 
example it is concluded that the results for X c are not 
definite proof for the presence or absence of a center of 
symmetry. 
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Abstract 

It is proposed that a weighted coordination number, 
Z*, be used as a measure of the number of neighbours 
of an atom in a crystal. Coordinating atoms contribute 
faces to the Voronoi polyhedron around a central atom 
and their contributions are weighted in proportion to the 
solid angle subtended by that face at the centre. The 
advantages of this definition over other proposals are 
pointed out. 

0567-7394/79/050772-04501.00 

The concept of coordination number (CN) of an atom 
or ion in a crystal is very widely used and has proved 
very fruitful in crystal chemistry. The CN of atoms in 
crystals has become accepted as a basic parameter 
describing a structure, and many atomic properties 
such as atomic (or ionic) radius are considered to 
depend upon it directly. It is nevertheless true that it is 
hard to find an unambiguous definition of CN that is 
not in conflict with intuition in many instances. In this 
paper a rigorous yet logical and useful definition is 
proposed. 
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In a simple and symmetrical structure such as the B 1 
(NaCI) structure there is no difficulty; each ion has six 
equidistant neighbours of the other kind and one has no 
hesitation in ascribing a CN of six to each ion in the 
crystal. Difficulties arise in less symmetrical structures 
and when there is a high CN. Then one often finds near 
neighbours with slightly different interatomic distances 
and it becomes difficult to determine how many should 
be considered as coordinating a central ion. 

Several authors have proposed schemes for unam- 
biguously determining coordination number. These 
involve, for example, identifying a gap in the list of 
interatomic distances - a procedure that often leads to 
difficulties. A simple procedure that appears not to 
have been considered before, but which nearly always 
leads to an acceptable CN, is to add atoms to the 
coordination polyhedron in order of increasing inter- 
atomic distance, but to stop when adding the next atom 
would result in a non-convex polyhedron. Brunner 
(1977) suggests cutting off the coordinating atoms at 
the largest gap in the differences of the reciprocals of 
the interatomic distances. Brunner also suggests 
weighting the contribution of an atom with a weight 
that decreases with interatomic distance so that non- 
integral coordination numbers appear (cf. Bhandary & 
Girgis, 1977). It is clear, though, that a weighting 
scheme that is based on concepts of bond strength are 
unlikely to be satisfactory. Indeed, if bond strengths of 
the Pauling type are employed one simply finds their 
sum to be the formal valence of the atom (Brown & 
Shannon, 1973). To be useful, the concept of CN must 
be based on geometrical principles. 

In the field of alloy structures, the most generally 
accepted definition of CN is that of Frank & Kasper 
(1958). These authors base their definition on a con- 
sideration of the Voronoi polyhedron surrounding each 
atom. This is the polyhedron enclosing the space (the 
domain of an atom) in which all points are closer to the 
centre of that atom than to any other. Any atom whose 
Voronoi polyhedron shares a face with the polyhedron 
of the central atom is counted as a neighbour; the 
number of neighbours so defined is the CN of the 
central atom. 

However, this definition, although unambiguous, 
leads to difficulties, even in some very simple struc- 
tures; we give just two examples. In the body-centred 
cubic structure, the Voronoi polyhedron is the Archime- 
dean truncated octahedron 4.62 (Fig. la) sharing each 
of its 14 faces with another such polyhedron. The 
Frank-Kasper  CN is accordingly 14, although there 
are only eight nearest neighbours of any atom. 
Intuitively a CN greater than that of closest packing 
(viz 12) does not seem entirely reasonable. 

The difficulty becomes more acute in the diamond 
structure. Laves (1967) points out that here the 
Voronoi polyhedron is the figure derived by lp_La_cing a 
triangular pyramid (with height equal to 1/X/24 times 

the base) on each of the triangular faces of an 
Archimedean truncated tetrahedron (3.62). The Frank-  
Kasper CN is now 16. Frank (1967) suggested a way 
out of this particular difficulty by distinguishing 
between direct and indirect neighbours. A direct 
neighbour is one for which the line joining its centre to 
the centre of the atom in question passes through the 
shared face of the Voronoi polyhedra of the two atoms. 
All others are indirect neighbours. In this scheme each 
atom in the diamond structure has four direct and 
twelve indirect neighbours. 

Even with the distinction between direct and indirect 
neighbours many difficulties remain (Laves, 1967); not 
the least of which is that a very small distortion of a 
crystal structure can result in a discontinuous change in 
CN. Thus if one starts with a simple cubic array and 
makes a small trigonal distortion (by compression 
along [111]) the Voronoi polyhedron (initially a cube) 
acquires eight new faces (Fig. lb) so that from the 
Frank-Kasper  point of view, the CN jumps discon- 
tinuously to fourteen. Alternatively, if one starts with a 
face-centred cubic array and subjects it to a small 
tetragonal distortion (compression along [001]) the 
Voronoi polyhedron, originally a rhombic dodeca- 
hedron, now acquires two new faces (Fig. lc) and the 
CN jumps from twelve to fourteen. Thus, an 
infinitesimal distortion of the symmetrical array results 
in both simple cubic and face-centred cubic having the 
same CN as body-centred cubic. 

It is worth noting in passing that in each case the 
polyhedra are topologically the same as the truncated 
octahedron that is the domain for the b.c.c, array. This 
reflects the fact that the b.c.c, array can be generated 

(a) 

!\ 

(b) (c) 

Fig. 1. (a) The Voronoi polyhedron for the body-centred cubic 
array. (b) The Voronoi polyhedron for the simple cubic array 
after a small trigonal distortion by compression along [111 ]. (c) 
The Voronoi polyhedron for the face-centred cubic array after a 
small tetragonal distortion by compression along 1001 ]. 
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from the simple cubic or f.c.c, arrays by distortions of 
the type described. 

In these examples, the 'new' Frank-Kasper 
neighbours (which are direct neighbours) are associated 
with very small faces on the Voronoi polyhedron. It 
would seem appropriate to weight their contribution to 
the CN by some factor, such as one proportional to the 
area of the face. Actually a more appropriate weighting 
factor would be the solid angle subtended by the face at 
the centre of the polyhedron, as indirect neighbours can 
contribute faces of quite large surface area, but usually 
subtending a small solid angle at the central atom. 
Accordingly we adopt this weighting principle in what 
follows. 

In metal crystals (in which atoms that are identical 
or similar chemically are counted as part of the 
coordination polyhedron), the Frank-Kasper  definition 
of atomic domain is retained and again coordination 
number is related to the number of faces of the 
enclosing polyhedron. However, in counting CN it is 
supposed that each atom contributes an amount 
proportional to the solid angle subtended by the corre- 
sponding face at the centre of the polyhedron; the 
proportionality factor being such that the largest solid 
angle contributes unity to the coordination number. 
The CN so defined is denoted by Z* in what follows. 

Returning to the example of the body-centred cubic 
structure; the Voronoi polyhedron has eight hexagonal 
faces and six smaller square ones (Fig. la). Let r 
denote the ratio of the solid angle subtended by the 
square faces to that subtended by the hexagonal faces: 

Z* = 8 + 6r  = zc/tan-l(V/5/7) = 10.16. (1) 

A similar calculation for the domain of diamond 
structure yields 

Z* = 4zr/[2zr- 3 cos-t(7/18)] = 4.54. (2) 

For the simple cubic and the face-centred cubic 
arrays, one of course obtains the same CN's (6 and 12 
respectively) by any method; the values of Z* now 
obtained for the diamond and body-centred cubic 
arrays are in accord with these in the sense that Z* 
increases in the sequence: diamond, simple cubic, body- 
centred cubic, face-centred cubic; as does the packing 
density. 

In ionic crystals one may proceed in just the same 
way in many instances. Thus in the B1 (NaCI) 
structure, the Voronoi polyhedron around each ion is a 
cube sharing each face with a corresponding cube 
around the counter ion. Z* is thus equal to the conven- 
tional coordination number, six. In other simple struc- 
tures such as the B2 (CsC1) or B3 (ZnS) structures, 
one has the problem that next-nearest neighbours 
which are like ions contribute to defining the Voronoi 
polyhedron. There are two courses one may adopt at 
this stage. One may simply determine Z* from faces 
corresponding to coordination by counter ions (getting 

eight and four respectively in these instances)ignoring 
the other faces. A second procedure, which seems to be 
more in line with the concept of coordination by 
counter-ions in ionic crystals, is to construct the 
domain of a central ion by including all that space 
nearer to the centre of that ion than to the centre of any 
other counter-ion in the crystal. Polyhedra bounding 
domains defined in this way will not be Voronoi poly- 
hedra (as they are not space-filling without overlap). In 
the examples of the B2 and B3 structures they will be 
regular octahedra and regular tetrahedra, respectively, 
but Z* will be eight and four as before. In general 
though, the two procedures will lead to slightly different 
results and which of the two will prove the more useful 
remains to be determined. 

Determination of the appropriate polyhedra is 
readily performed by computer if the coordinates of the 
atoms are known (Mackay, 1972). For example, 
Mackay has calculated the Voronoi polyhedra around 
the atoms in a structure involving irregular coor- 
dination. This is the structure of Ba3(VO4) 2, one of a 
number of compounds isostructural with palmierite, 
K2Pb(SO4) 2 (Wyckoff, 1965). Ba(1) has six close 
oxygen neighbours and six more oxygen ions about 
15% farther away; from Mackay's data we calculate 
Z* = 8.91. Ba(2) has a less regular coordination with 
one nearest neighbour, three somewhat farther away 
and six slightly farther still. Again Mackay's data yield 
Z* -- 6.68 for this ion, reflecting the very different 
crystal chemical role of Ba(1) (replacing K) and Ba(2) 
(replacing Pb). 

It would appear that accumulation of similar data for 
many structures could lead to useful correlations with 
ionic radii, prediction of the effects of pressure, etc., 
much as now is done for more symmetrical structures. 

A useful application of this rigorous definition of 
coordination may be in emphasizing the continuity 
between structure types (Hyde, Bursill, Andersson & 
O'Keeffe, 1972). The transition from the B 1 to the B2 
structure (and related transitions involving crystals of 
different stoichiometries) has been discussed from this 
point of view (Hyde & O'Keeffe, 1973). One of the two 
paths we discussed for this transformation involved the 
description of both structures by a rhombohedral cell 
with anion at 0,0,0 and cation at 1 l 1 Variation of the ~,~,'~. 

parameter u = cos a (where a is the rhombohedron 
angle) from 0 to ½ corresponds to a transformation 
from the B2 to the B 1 structure. This is the prototype 
of a number of transformations (Hyde, Bursill, An- 
dersson & O'Keeffe, 1972) in which CN changes from 
six to eight. 

In the B1 ~ B2 (and related) transformation, Z* 
may be simply calculated by determining the poly- 
hedron surrounding the space in which all points are 
closer to the centre of the cation than to any anion. For 
a value of u between 0 and ½ the polyhedron is an octa- 
hedron with six large and two smaller faces. Thus Z* is 



M. O ' K E E F F E  775 

between six and eight. The twelve vertices of the octa- 
hedron are readily_described in terms of the equipoints 
of space group R 3m. Referred to hexagonal axes, half 
of them are in 18(h); x = (3 - 2u)/(12 - 12u), z = (3 + 
14u)/(12 + 24u) and the other half in 18(h) with x = (1 

- 2u)/(4 - 4u), z = ]. Z* can be expressed as a 
function of u using elementary (but not trivial) 
trigonometry as 

Z * =  4zc/cos-~[(6u 2 -  5 u ) / ( 3 -  2u)]. (3) 

As u varies from ½ to 0, Z* changes smoothly from 
six to eight, and the polyhedron transforms from a cube 
to a regular octahedron. At u = ¼, Z* = 6.52; the poly- 
hedron (Fig. 2) at this point bears a remarkable 
resemblance to Dfirer's (1514) octahedron. 

Another valuable use of the suggested procedure for 
determining Z* will be in comparing the coordinations 
of ions with irregular coordination polyhedra in series 
of related structures, for example the rare-earth ions in 
their halides. Investigations of such series are in 
progress. 

In the case of alloy structures, unreasonably high 
coordination numbers are eliminated. I suspect that for 
structures in which atoms are at nodes of a lattice (i.e. 
all equivalent) Z* < 12. It is well known that in this 
instance the Voronoi polyhedra have no more than 14 
faces (as in the examples of Fig. 1). For an array of 
equivalent points (a lattice complex) related by sym- 
metry elements of a space group, the Voronoi poly- 
hedra are congruent and often called stereohedra. 
Delaunay (Delone, 1961) has obtained the result that in 
n dimensions, the number of faces, F, of a stereo- 
hedron obeyst  

F < 2(2"--  1) + 2 " ( h -  1), (4) 

where h is the ratio of the number of points of the 
lattice complex to the number of points of the 
associated Bravais lattice (for example, h = 1 for the 
b.c.c, array and h = 2 for the diamond array). For n = 
3, h = 2, one has F < 22. I am not aware of an example 

? Note added in proof." It has recently been conjectured (Brunner 
& Laves, 1978) that F _< 3" - 1. 

I 

ZI8 f7 
6 60 ° 

I 
s ° • 

0 
70" 8 0  ° 9 0  ° 
(X : C O S - I  U 

Fig. 2. The variation of Z* with rhombohedral angle, a ,  for the B 1 
-* B2 transformation discussed in the text. The cation domain for 
three values of a (60, 75 and 90 °) is sketched in. 

in which the equality holds although Smith (1965) has 
given an example with F ---- 20 and of course for the 
stereohedra associated with the diamond array F -- 1 6 .  

In both these instances Z* < 5. High CN's  remain, 
however, where they might be expected, i.e. in 
coordination of 'large' atoms by 'small' ones (as in 
some metal borides). 

Since this work was completed, a paper by Carter 
(1978) has appeared. Carter also considers the question 
of non-integral coordination numbers and the use of 
solid angles subtended by the faces of polyhedra 
around an atom. However, in his approach, the 
coordination number as defined is dependent on relative 
ion (atom) size in a given structure rather than on just 
the atomic arrangement. Thus in a compound A B  with 
the B2 structure, the coordination numbers of A and B 
are not in general equal and may vary between 6 and 
14 depending on how the A - B  distance is divided into 
the sum of radii for A and B. Particularly for ionic 
crystals, there is no general agreement on how to 
partition bond lengths into sums of radii, rather, there is 
a growing realization that in principle this cannot be 
done unambiguously. Finally, Carter's weighting 
scheme [his equations (1) and (2)] does not in general 
assign a weight of unity to the nearest atom, which 
must surely be done if a more rigorous definition of 
coordination number consistent with current usage is to 
be developed. 

This work was supported by a grant (DMR78- 
09197) from the National Science Foundation. 
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